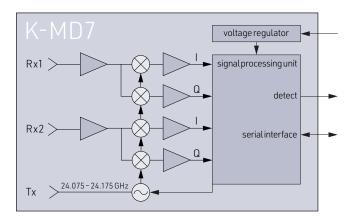
RFbeam Microwave

Features

- > Small and low cost digital 24 GHz traffic radar sensor
- Measures speed, direction, distance and angle of moving objects
- Perfect for speed signs or simple traffic counting applications
- Maximum speed range of 200 km/h and distance range of 300m
- > Typical detection distance of 50m for persons and 150m for cars
- Multi-target tracking for up to 8 moving objects
- Target list output over serial UART interface
- Pulsed FSK signal processing to lower power consumption
- Integrated bootloader for firmware update
- Wide operating voltage range of 3.2 to 5.5V
- > 34 x 30 degree antenna beam pattern


Description

The K-MD7 is an evolution of the successful K-LD7 with a narrower antenna beam and enhanced processing power. This allows for higher detection distances and tracking of up to 8 objects to a maximum unambiguous range of 300m. The serial interface features the possibility to read out a target list with speed, direction, distance and angle information of all moving objects in front of the sensor or to digitally configure the sensors detection parameters.

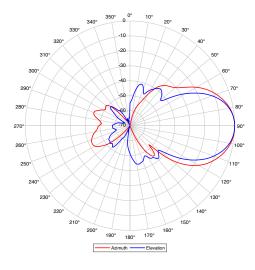
There is no need to write own signal processing algorithms or handle small and noisy signals. A small footprint of $70 \times 32 \times 13.5$ mm gives maximum flexibility in the product development process. For fast prototyping an evaluation kit (K-MD7-EVAL) is available which features powerful signal visualization on a PC.

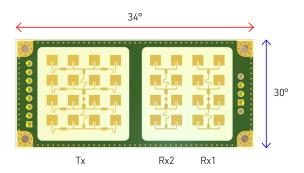
Block Diagram

Figure 1: Block diagram

Characteristics

Parameter	Conditions / Notes	Symbol	Min	Тур	Max	Unit
Operating conditions						
Supply voltage		Vcc	3.2		5.5	V
RMS current	Depending on speed range setting	Icc	55		105	mA
Peak current	Peak current			180	250	mA
Operating temperature		Тор	-40		+85	°C
Storage temperature		Tst	-40		+105	°C
Transmitter						
Transmitterfrequency	T _{amb} =-40°C +85°C	f⊤x	24.075		24.175	GHz
Frequency drift vs. temperature		Δf_{TX}		0.6		MHz/°C
Antenna gain	f _{TX} =24.125GHz	GTXAnt		12.2		dBi
Output power	EIRP	P _{TX}			20	dBm
Spurious emissions	According to ETSI 300 440	Pspur		-30		dBm
Receiver						
LNA gain		GLNA		19		dB
Mixer conversion loss	f _{IF} =1kHz	Dmixer		10		dB
Antenna gain	f _{TX} =24.125GHz	GRXAnt		9.8		dBi
Receiver sensitivity	f _{IF} =500Hz, B=1kHz, S/N=6dB	Prx		-104.2		dBm
Overall sensitivity	f _{IF} =500Hz, B=1kHz, S/N=6dB	Dsystem		-148.8		dBc
Detection distance	=1 m² (Person)	R		50		m
Signal Processing						
Modulation				FSK		
Velocity processing			512	point complex	FFT	
Speedrange	Max value adjustable	r _{speed}	0.5		200	km/h
Speed resolution	Depending on speed range setting	$\Delta r_{\sf speed}$	0.2		0.8	km/h
Distance range	Max value adjustable	r _{distance}	1		300	m
Distance resolution	Depending on distance range setting	$\Delta \Gamma$ distance	1		3	m
Angular resolution	<u> </u>	∆rangle		1		deg
Tracking range		r Ttracking	1		300	m
Antenna						
TX Horizontal -3dB beam width	E-Plane	$W_{\phi T X}$		30		0
TX Vertical -3dB beam width	H-Plane	Wөтх		30		0
RX Horizontal –3dB beam width	E-Plane	$W_{\phi RX}$		46		0
RX Vertical -3dB beam width	H-Plane	Werx		30		0
Horiz. side lobe suppression		Dφ	-12	-20		dB
Vertical side lobe suppression		Dθ	-12	-20		dB
Rx1 / Rx2 spacing		l		12.446		mm
Interface						
Digital output high level voltage		V _{OH@8mA}	2.4		3	V
Digital output low level voltage		Vol@8mA	0		0.4	V
Digital output high level voltage		V _{OH@20mA}	1.7		3	V
Digital output low level voltage		Vol@20mA	0		1.3	V
Digital input high level voltage		VIH	1.7		4	
Digital input low level voltage		VIL	-0.3		1.3	
Digital I/O source/sink current		I _{OH} , I _{OL}	-20		20	mA
Body		TUH, TUL	20		20	IIIA
Outline dimensions				70 × 32 × 13.5		mm³
Weight				11		
Connector	3pin 2.54mm / 8pin 2.54mm		5/mm	g		
			Spii12.	ouinin/ ohin z		
ESD rating	Human hadours delete	1/			2000	
Electrostatic discharge	Human body model class 2	V _{ESD}			2000	V


Table of contents


1	Ant	enna Diagram Characteristics	4
2	Pin	configurations and functions	4
3	The	ory of Operation	5
	3.1	Overview	Ę
	3.2	Processing	Ę
	3.3	Speed and direction measurement	6
	3.4	Distance measurement	6
	3.5	Angle measurement	6
	3.6	Raw targets and tracking filter	7
4	App	olication information	8
	4.1	Host driven operation	3
	4.2	Radarsettings	3
	4.3	Detection settings	10
5	Inst	truction set description	11
	5.1	Hardware Layer	11
	5.2	Communication Layer	11
	5.3	Presentation Layer	12
	5.4	Application	13
	5.5	Bootloader	18
6	Inte	egrators information	20
	6.1	Installation Instruction	20
	6.2	Europe (CE-RED)	21
7	Out	line Dimensions	22
8	Ord	erinformation	22
9	Rev	rision history	22

1 Antenna Diagram Characteristics

This diagram shows module sensitivity in both azimuth and elevation directions. It incorporates the transmitter and receiver antenna characteristics.

Figure 2: Overall antenna diagram

2 Pin Configurations and Functions

Figure 3: Pin configuration

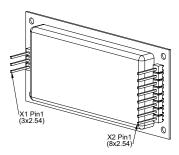
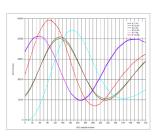


Table 1: Pin function description

Connector	Pin. No.	Name	Description
X1 1-3		Mounting	These pins are for mounting only.
			(1) Leave these pins floating and do not connect them to any potential.
X2	1	GND	Ground pin
	2	Detection out	Digital detection output. Goes to high if in minimum one tracked target is inside of the defined detection zone.
			The detection area and other parameters of the detection algorithm can be easily changed over the instruction set.
	3	VCC	Power supply pin (3.2 to 5.5V)
	4	RX	Serial interface RX input
	5	TX	Serial interface TX output
	6	Digital IO 1	Reserved for future use, do not connect
	7	Digital IO 2	Reserved for future use, do not connect
	8	Digital IO 3	Reserved for future use, do not connect

3 Theory of Operation


3.1 Overview

The K-MD7 is a Doppler radar sensor and consists of an analogue RF frontend and a powerful signal processor with tracking and a fully digital serial interface. The RF frontend features one transmitter with a modulation input and two I/Q receivers. The signal processing unit modulates the frontend with a frequency step (FSK modulation) and samples the analogue I/Q Doppler signals for both transmit frequencies and for both receiving antennas. The processing of this sampled data allows the measurement and tracking of speed, direction, distance and angle of moving objects in the front of the sensor.

3.2 Processing

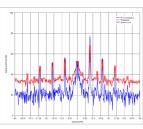
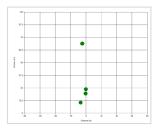
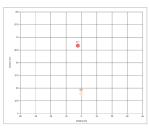

The processing of the K-MD7 uses different processing stages to measure and track the speed, direction, distance and angle of moving targets. The last stage implements a configurable detection zone which signals a detection over a digital output. To get the full control in an application it is possible to read out the data of each processing step over the serial interface.

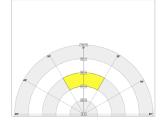
Table 4: Signal processing workflow


Raw ADC data (RADC)

- > Samples I/Q ADC data of receiver Rx1 and Rx2 for frequency A
- Samples I/Q ADC data of receiver Rx1 for frequency B


Raw FFT data (RFFT)

- > Calculates the complex FFT from the I/Q ADC data of Rx1 and Rx2 for frequency A
- Averages the two complex FFT's
- › Adds the threshold line to the RFFT data
- Includes speed and direction filters


Raw ADC data (RADC)

- > Samples I/Q ADC data of receiver Rx1 and Rx2 for frequency A
- > Samples I/Q ADC data of receiver Rx1 for frequency B

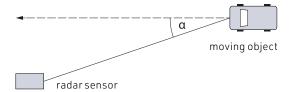
Tracking data (TDAT)

- Cluster and track the dominant raw targets
- Filter out interferences
- › Predicts temporary lost objects
- > Can track up to 8 different targets

Detection zone

- $\,\,{}^{\backprime}$ Generates a detection if in minimum one tracked target is in a detection zone
- › Size of detection zone is configurable

Speed and direction measurement


Every moving object in front of the sensor generates a Doppler frequency at the analogue outputs of the RF frontend. This Doppler frequency is proportional to the speed of the object. Moving direction is defined by the phase shift between the I/Q signals.

The K-MD7 calculates the speed and the direction for all raw targets. The direction is represented by the sign of the speed. A positive speed represents a receding and a negative speed an approaching movement.

The calculated speed is only correct if the movement of the object is radial to the sensor. If the movement is tangential the speed needs to be compensated by the angle of the movement compared to the sensor.

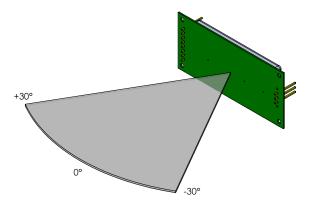
$$v_{real} = \frac{v_{measured}}{\cos{(\alpha)}}$$
 [km/h]

Figure 5: Tangential speed compensation

3.4 Distance measurement

The distance measurement is based on the FSK principle. The signal processing unit quickly changes between two discrete RF frequencies and measures the ADC values for both transmitting frequencies. After the detection of all raw targets above the threshold, the distance for each target is calculated based on the phase difference in both ADC signals.

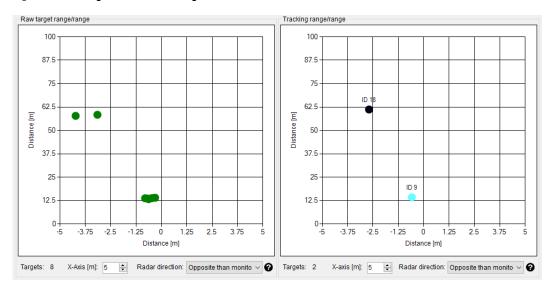
3.5 Angle measurement


The angle measurement is based on the angle of arrival principle. After the detection of all raw targets above the threshold, the angle for each target is calculated based on the phase difference between the two receiving channels.

The angle is calculated in degree and valid between $\pm -30^{\circ}$. If an object has an angle of zero it is directly in front of the sensor. A positive or negative angle defines if the target is more on the right or left side of the sensor.

Any objects outside the valid angular range will be attenuated due to the narrow antenna beam of the sensor. If a strong reflector is in the near field of the sensor, but outside the unambiguous angle range, it may produce a RAW target with incorrect angle information.

Figure 6: Positive and negative angle definition

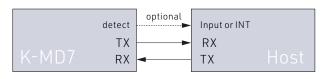

3.6 Raw targets and tracking filter

A real object generates not only one raw target point. A car for example generates several raw target points with different speeds and different distances created by the size of the car and the wheels. This generates a so called point cloud of different raw targets from one object. Depending on the environment where the sensor is used it will also see more or less reflexions generated by the moving object. The number of raw targets can be controlled by adjusting the threshold offset which is described in more detail in chapter Threshold offset on page 9 or by using a speed or direction filter.

To get a more usable output the sensor features a tracking filter to cluster and track the dominant targets based on the raw targets. The filter includes a suppression of reflexions, vibrations and interferences and can also predict temporary lost targets which generates a smooth output.

The tracking filter can be adapted to various applications via the parameters Tracking filter type which is described in more detail in chapter Tracking on page 9. information.

Figure 7: RAW targets vs. tracked targets



Application Information

Host driven operation

With a connection of the serial interface to a host (for example MCU or PC) it is possible to read out the processing data (RADC, RFFT, PDAT and TDAT) and control all the parameters of the sensor. Optionally it is possible to connect the digital output of the sensor to an input on the host to trigger the host if the sensor generates a valid detection. This is the recommended use case and allows the user to optimize the sensor easily for different applications.

Figure 8: MCU or PC connection example

4.2 Radar settings

The K-MD7 features different parameters to adjust the functionality of the sensor to the needs of different applications. All parameters are stored in the radar parameter structure which can be read out and written over the serial interface. The structure and the serial protocol are described in the chapter Instruction Set Description on page 11.

It is very important to set the distance and speed range settings to values which are matching with the distance and speed of the expected targets in the detection area of the sensor.

For example, if the goal is to measure objects in the 100m distance and 50km/h speed range, but cars are moving at 150m with 150km/h, the 200m distance range and 200km/h speed range setting must be used or the threshold offset needs to be increased until the cars are no longer visible in the raw targets.

Wrong settings can generate false sensor outputs. It is possible that strong targets outside the configured distance or speed range can create faulty targets.

4.2.1 Distance range

The distance range parameter defines the maximum unambiguous distance measurement of the sensor. For a lower maximal distance range, the range resolution is better but if the distance of a measured target is higher than the current distance range setting it can generate wrong measurements. Hence it is very important to set the distance range to a setting where targets are expected.

Table 2: Distance range settings

Max. range [m]	Range resolution [m]
100	1
200	2
300	3

An approach to work with a lower maximum distance range is to change the sensor orientation to get a field of view without moving objects above the maximal distance range or to increase the threshold offset (described in the chapter Threshold offset on page 9) to reduce the sensitivity of the sensor.

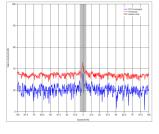
4.2.2 Speed range

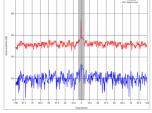
The speed range parameter defines the maximum unambiguous speed measurement of the sensor. For a lower maximal speed range, the speed resolution is better and the current consumption is smaller but if the speed of a measured target is higher than the current speed range setting it can generate wrong measurements. Therefore it is very important to set the speed range to a setting where targets are expected.

Table 3: Speed range settings

Max. speed [km/h]	Speed resolu- tion [km/h]	Typ. frame duration [ms]	Typ. Supply current [mA]
50	0.2	114	55
100	0.4	57	72
200	0.8	29	105

An approach to work with a lower maximum speed is to change the sensor orientation to get a field of view without moving objects above the maximal speed range or to increase the threshold offset (described in the chapter Threshold offset on page 9) to reduce the sensitivity of the sensor.




To read out data intensive messages like RADC and RFFT it is recommended to work with the highest baud rate. If the readout time of the requested data is higher than the typical frame duration it is not possible to read out the frames in real time. By checking the frame number in the DONE message, it is possible to validate real time readout.

4.2.3 Threshold offset

The threshold offset is adjustable and defines the distance in dB between the noise floor of the raw FFT data and the threshold line. The processing in the K-MD7 searches for raw targets that are above this threshold line. The smaller the offset the more sensitive the sensor will be. A higher offset will reduce the sensitivity.

Figure 9: Low vs. high threshold offset

4.2.4 Tracking filter

The tracking filter can track up to 8 different targets and has the option to change its behaviour over a parameter in the instruction set.

The implemented tracking filter is optimized for traffic applications and hence the output does potentially not match your application requirements. RFbeam offers the possibility to customize the tracker to your needs. Do not he sitate to contact us for an appropriate quote.

Table 4: Tracking filter types

Filter type	Description
Standard	Standard filter type to track multiple cars on a street
Fast detection	Enables a faster detection of the target with the disadvantage to reduce the immunity against reflexions and other interferences.
Long visibility	Filter with a high immunity against interferences and a high prediction of temporary lost targets

4.2.5 Base frequency

There are three channels available to adjust the base transmit frequency of the sensor. This can be useful if multiple sensors are transmitting in the same area with the same base frequency to suppress the generated interferences that can occur in such an environment

4.3 Detection settings

4.3.1 Target generation filter

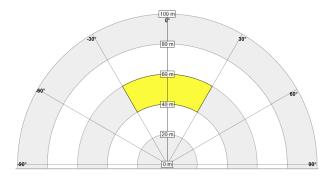
The generation of targets in the K-MD7 can be filtered based on a set of adjustable parameters to optimize the sensor for different applications. The parameters are all located in the radar parameter structure which is described in detail in chapter Parameter structure on page 14.

Table 5: Target generation filter parameters

Parameter name	Description
Min. / max. detection speed	Used to filter out slow or fast targets. PDAT Raw targets are only generated if the speed of the object is between the minimum and maximum detection speed limit.
Detection direction	Used to limit the target generation by its direction. It is possible to filter out approaching or receding targets or allow a detection for both directions.

4.3.2 Detection zone filter

The K-MD7 features a configurable detection zone filter which switches the detection output to high as soon as at least one TDAT target is within the defined zone. This function can be used, for example, to wake up the host or an external display when a valid target is detected.


Table 6: Detection zone filter parameters

Parameter name	Description
Min. / max. detection zone distance	Used to limit the detection zone to a minimum and maximum distance.
Min. / max. detection zone angle	Used to limit the detection zone to a minimum and maximum angle.

The detection zone is only adjustable inside of the unambiguous angle range of +/- 30°.

Figure 10: Detection zone visualisation

5.3.3 Digital output

The sensor features four digital IO's on its connector. One output is used to signal if there is in minimum one tracked target within the detection zone. The remaining 3 IO's are reserved for future use or customer specific functions.

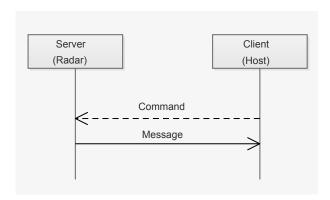
 $\label{table 7} \textit{Table 7: } \textbf{Functionality of detection output}$

Function	Description
Detection	Signals if there is a moving object inside of the
output	detectionzone
	Low -> No valid target inside the detection zone
	High -> In minimum one TDAT target inside the
	detectionzone

5 Instruction Set Description

5.1 Hardware Layer

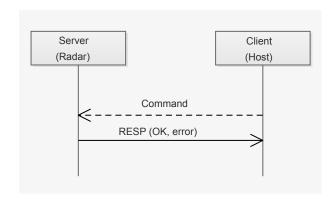
The hardware layer is based on a simple UART connection with a configurable baud rate. The sensor always starts up with its default baud rate. The default baud rate can be changed over the INIT command as described in the chapter Connection on page 12.


Table 8: Default serial connection settings

Parameter	Configuration		
Baud rate	115200		
Data bits	8		
Parity	Even		
Stop bits	1		
Flow control	None		

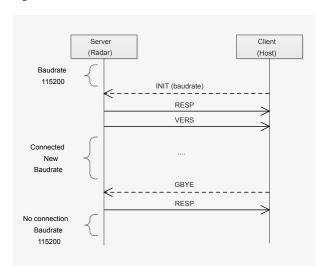
5.2 Communication Layer

5.2.1 Client-Server


Figure 11: Client-Server model

The communication is based on a client-server model. There are two types of packets transmitted. Commands are sent from client to server and messages are sent from server to client.

5.2.2 Handshaking


Figure 12: Handshaking

Every command sent by the client is acknowledged by the server with a response message (RESP). The response message includes an error code what delivers information data about the success or failure of the received command.

5.2.3 Connection

Figure 13: Connection

The server starts up with a default baud rate of 115200 baud. The client has to establish a connection with the INIT command where it needs to define the baud rate which will be used for the communication. After acknowledging of the INIT command by a RESP message a VERS message with a firmware string follows before the server changes the baud rate to the selected one out of the INIT command.

The firmware string of the VERS message can be used to check if the sensor has started into the application or to the bootloader. The sensor only starts into the bootloader if a jump bootloader command was sent out of the application or if there is a corrupt firmware programmed.

To disconnect, the GBYE command has to be sent by the client. After acknowledging the GBYE message the server changes back to his default baud rate.

5.3 Presentation Layer

All commands and messages sent have the format described in table below.

Table 9: Packet format

Description	Datatype	Length
Header	ASCII c haracter	4 Bytes
The header describes the command or message type (e.g. INIT, RADC,)		
Payload Length	UINT32	4 Bytes
Defines the size of the added payload. The payload length is always sent even if the payload is zero.		
It is sent as little endian (LSB first).		
Payload	Binary data	Х
The payload is message and command dependent. If the payload includes datatypes with multiple bytes (e.g. UINT16, INT32,) then they are sent as little endian (LSB first).		

5.4 Application

5.4.1 Data output

The client can request application messages from the server using a handshake or streaming mode.

In handshake mode, the client must request each message with the GNFD command, which has the disadvantage that messages can be lost if the client is too slow to send the next GNFD command within one frame.

The streaming mode allows the client to enable or disable streaming of messages via the RDOT command. The sensor then sends the enabled messages per frame in real time to the client. This only makes sense if the client can process all data fast enough.

Figure 14: Read messages in handshake mode

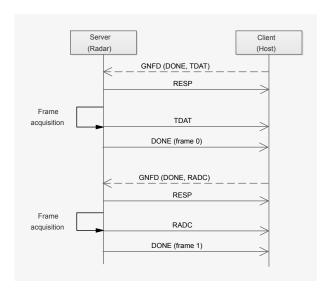
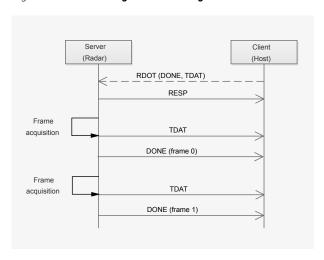



Figure 15: Read messages in streaming mode

5.4.2 Get and set parameter structure

The client can set every parameter with a single command. But there is also the possibility to set all parameters together within a parameter structure or read this structure out. The structure is defined in detail in the next chapter.

Figure 16: Get parameter structure

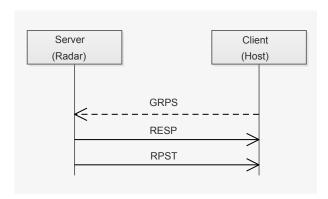
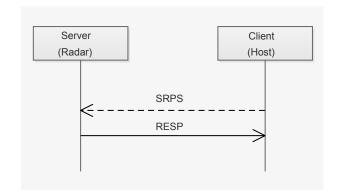



Figure 17: **Set parameter structure**

5.4.3 Parameter structure

The radar has a set of parameters what are stored in a structure. The structure can be read out by the GRPS command and set by the SRPS command. Further it is possible to change each parameter by a dedicated command.

Table 10: Radar parameter structure

Description	Datatype	Payload length	Payload data	Default settings
Firmware version	STRING	19	Zero-terminated String	K-MD7_APP-RFB-YYXX
Frequency channel	UINT8	1	0=Low	1 = Middle
			1=Middle	
			2=High	
Speed setting	UINT8	1	0=50km/h	1 = 100km/h
			1=100km/h	
			2=200km/h	
Range setting	UINT8	1	0=100m	1 = 200m
			1=200m	
			2=300m	
Threshold offset	UINT8	1	Minimum = 0 dB	12 dB
			Maximum = 60 dB	
Tracking filter type	UINT8	1	0=Standard	0 = Standard
			1=Fast detection	
			2=Long visibility	
Minimum detection zone distance	UINT8	1	0-100% of range setting	40% -> 80m @ default range
Maximum detection zone distance	UINT8	1	0-100% of range setting	60% -> 120m @ default range
Minimum detection zone angle	INT8	1	-30° to +30°	-30°
Maximum detection zone angle	INT8	1	-30° to +30°	+30°
Minimum detection speed filter	UINT8	1	0-100% of speed setting	5%
Maximum detection speed filter	UINT8	1	0-100% of speed setting	100%
Detection direction filter	UINT8	1	0=Receding	2 = Both
			1=Approaching	
			2=Both	

5.4.4 Commands

The following table provides detailed information about all possible commands of the application:

Table 11: Application commands

Header	Payload length	Description	Datatype	Payload data								
INIT	1	Command to start a connection with a defined baud rate.	UINT8	Baud ra 0=1152 1=4608 2=9216 3=2000 4=3000	00 00 00 000	t/s:						
GNFD	1	Get next frame data request to read out application	UINT8	Binary	coded I	bit-field fo	rmes	sages: 0=	-disable	d, 1=en	abled	
		messages once.		Bit-fiel	d repre	sentation	:					
		Enable DONE message to read out		7	6	5	4	3	2	1	0	
		frame number.		X	Χ	DONE	Χ	TDAT	PDAT	RFFT	RADC	
				X = don	't care							
RDOT	1	Enable streaming messages. All enabled messages	UINT8	Binary	coded b	oit-field fo	rmess	ages: 0=	disable	d, 1=ena	abled	
		will be streamed out until a GBYE command is sent		Bit-field representation:								
		or a power cycle is performed.		7	6	5	4	3	2	1	0	
		Enable DONE message to read out		X	Χ	DONE	Χ	TDAT	PDAT	RFFT	RADC	
		frame number.		X = don'	't care							
GRPS	0	Read complete radar parameter structure	-									
SRPS	31	Write complete radar parameter structure	STRUCT		•	arameter at of the d			etailed i	informa	tion	
RFSE	0	Restore factory settings	-	-								
GBYE	0	Disconnect from sensor	-	-								
RBFR	1	Set frequency channel to prevent interferences if multiple sensors are used in the same application.	UINT8	0=Low 1=Middle 2=High								
RSPI	1	Set speed setting	UINT8	0=50km 1=100k 2=200k	m/h							
RRAI	1	Set range setting	UINT8	0=100m 1=200m 2=300m								
THOF	1	Change threshold offset	UINT8	0-60dB	}							
TRFT	1	Set tracking filter type	UINT8	0=Standard 1=Fast detection 2=Long visibility								
MIRA	1	Change minimum detection zone distance	UINT8			ge setting						
MARA	1	Change maximum detection zone distance	UINT8	0-100% of range setting								
MIAN	 1	Change minimum detection zone angle	INT8	-30° to +30°								
MAAN	1	Change maximum detection zone angle	INT8	-30° to +30°								
MISP	1	Set minimum detection speed filter	UINT8			ed setting						
MASP	1	Set maximum detection speed filter	UINT8			ed setting						
DEDI	1	Change detection direction filter	UINT8	0=Rece		ca setting						
DLDI	1	change detection direction filter	UIINTO	1=Appro 2=Both	oachin	9						
JBTL	0	Jump to bootloader	-									

5.4.5 Messages

The following table provides detailed information about all possible messages of the application:

Table 12: **Application messages**

Header	Payload length	Description	Datatype	Payload data		
RESP	1	Response message including an error code	UINT8	Error codes: 0=0K, no error 1=Unknown command, 2=Invalid parameter value 3=Invalid RPST version 4=Uart error (parity, framing, no 5=No calibration values 6=Timeout 7= Application corrupt or not pro		
'ERS	19	Application version	STRING	Version string including Null-ter K-MD7_APP-RFB-YYXX YY=Variant, XX=Revision	minator:	
RADC	6144	Raw ADC values	STRUCT	Description	Datatype	Length
		It is recommended to use the highest baud rate when reading out RADC messages		IF1 Frequency A 512 values of I-Channel 512 values of Q-Channel IF2 Frequency A	UINT16	2048
				512 values of I-Channel		
				512 values of Q-Channel IF1 Frequency B 512 values of I-Channel	UINT16	2048
				512 values of Q-Channel		
RFFT	2048	Raw FFT	STRUCT	Description	Datatype	Length
		🗽 It is recommended to use the highest baud		512 spectrum points [dB x 100]	UINT16	1024
		rate when reading out RFFT messages		512 threshold points [dB x 100]	UINT16	1024
PDAT	0-192	The array of detected raw targets. Max. 24 targets with 8 bytes each.	STRUCT	Description	Datatype	Length
		with o bytes each.		Distance [cm]	UINT16	2
				Speed [km/h x 100]	INT16	2
				Angle [deg x 100]	INT16	2
				Magnitude of target [dB x 100]	UINT16	2
DAT	0-72	The array of tracked targets. Max. 8 targets with 9 bytes each.	STRUCT	Description	Datatype	Length
		bytes cacii.		Distance [cm]	UINT16	2
				Speed [km/h x 100]	INT16	2
				Angle [deg x 100]	INT16	2
				Magnitude of target [dB x 100]	UINT16	2
				Tracking channel ID	UINT8	1
DONE	4	Frame done information with frame number	UINT32	Frame number since reset.		
RPST	31	Radar parameter structure	STRUCT	See chapter "Parameter structur	e" for details	

5.4.6 Communication example

Figure 18: Example INIT command with 115200 baud

host to radar	Heade	r: INIT			Length: 1 Byte				Payload 1 Byte: value 0 = 115200 baud		
nost to radar	0×49	0×4E	0×49	0×54	0×01	0×00	0×00	0×00	0×00		
	Heade	r: RESP			Length	n: 1 Byte			Payload 1 Byte: value 0 = 0K		
radar to host	0×52	0×45	0×53	0×50	0×01	0×00	0×00	0×00	0×00		
	Header: VERS					n: 19 Byt	е		Payload 19 Byte: Firmware string		
radar to host	0×56	0×45	0×52	0×53	0×13	0×00	0×00	0×00	For example: K-MD7_APP-RFB-0100 if connected to application or K-MD7_BTL-RFB-0100 for bootloader		

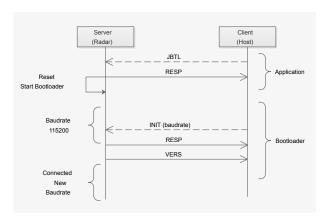
Figure 19: Example read out TDAT message with GNFD command

host to radar	Header: GNFD				Length: 1 Byte			Payload 1 Byte: value 8 = only TDAT enabled									
nost to radar	0×47	0×4E	0×46	0×44	0×01	0×00	0×00	0×00	0×08								
radar to host	Header: RESP			Length: 1 Byte			Payload 1 Byte: value 0 = 0 K										
radar to nost	0×52	0×45	0×53	0×50	0×01	0×00	0×00	0×00	0×00								
Header: TDAT			Length: 9 Byte			Payload 9 Byte: Only one TDAT target detected											
radar to nost	0×54	0×44	0×41	0×54	0×09	0×00	0×00	0×00	0×F2	0×2B	0×97	0×FF	0×2F	0×07	0×15	0×18	0×17

Figure 20: Example GBYE message

host to radar	Heade	r: GBYE			Length: 0 Byte				
nost to radar	0×49	0×4E	0×49	0×54	0×00	0×00	0×00	0×00	
	Heade	r: RESP			Lengt	h: 1 Byte	<u>:</u>		Payload 1Byte: value 0 = 0K
radar to host	0×52	0×45	0×53	0×50	0×01	0×00	0×00	0×00	0×00

Table 13: Example TDAT structure conversion

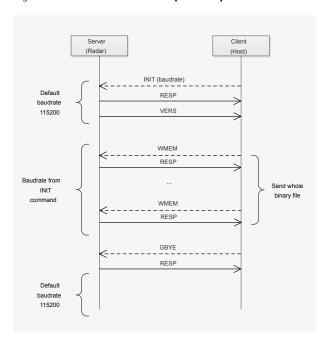

Description	TDAT pa	ayload LSB first	Value	Datatype	Conversion	Result
Distance [cm]	0xF2	0x2B	0x2BF2	UINT16	-	11250 cm
Speed [km/h x 100]	0x97	0xFF	0xFF97	INT16	/100	-1.05 km/h
Angle [deg x 100]	0x2F	0x07	0x072F	INT16	/100	18.39 deg
Magnitude of target [dB x 100]	0x15	0x18	0x1815	UINT16	/100	61.65 dB
Tracking channel ID	0x17	-	0x17	UINT8	-	ID 23

5.5 Bootloader

The bootloader can be invoked by sending a "Jump to bootloader" command from the application. After receiving the bootloader jump command, the sensor restarts, stays in the bootloader and waits for a new connection via an INIT command.

The host receives a VERS message back after a successful INIT command, which can be used to check if the sensor has started into the bootloader.

Figure 21: Jump to bootloader out of the application



In the next step, the host must send the complete firmware binary (provided by RFbeam Microwave) in packets of maximum 2048 bytes to the radar sensor using the WMEM command.

After successfully writing the binary file, a GBYE command must be sent to complete the update. The corresponding RESP message return a feedback with the error code whether the update was successful or not.

The sensor then restarts and the host can establish a new connection with an INIT command. The VERS message sent during this process provides information about the new firmware version.

Figure 22: Successful firmware update sequence

5.5.1 Commands

The following table provides detailed information about all possible commands of the bootloader:

Table 14: Bootloader commands

Header	Payload length	Description	Datatype	Payloa	ad data	
INIT	1	Command to start a connection with a defined baud rate.	UINT8	Baud r 0=1152 1=460 2=921 3=200 4=300	800 600 0000	
GBYE	0	Disconnect	-	-		
WMEM	9 to 2056	Write a flash memory page to a	STRUCT	Eachp	age write co	ommand needs the following data structure:
		defined memory address.	_	Byte	Length	Description
		① Use only firmware update files provided by RFbeam Microwave.		0-3	4	Relative memory address in little endian (LSB first).
						Starts at 0x00000000 and must be a multiple of 0x800 with a maximum of 0x0019800.
				4-7	4	Data length of the binary data.
						The length needs to be between 1 and 2048.
				8- 2055	1 to 2048	Binary application data

5.5.2 Messages

The following table provides detailed information about all possible messages of the bootloader:

Table 15: Bootloader messages

Header	Payload length	Description	Datatype	Payload data
RESP	1	Response message	UINT8	Error codes:
		including an error code.		0=0K, no error
				1=Unknown command,
				2=Invalid parameter value
				3=Invalid RPST version
				4=Uart error (parity, framing, noise)
				5=No calibration values
				6=Timeout
				7= Application corrupt or not programmed
VERS	19	Bootloaderversion	STRING	Version string including Null-terminator:
				K-MD7_BTL-RFB-YYXX
				YY=Variant, XX=Revision

Integrators Information

6.1 **Installation Instruction**

6.1.1 Mechanical enclosure

It is possible to hide the sensor behind a so called radome (short for radar dome) to protect it from environmental influences or to simply integrate it in the housing of the end product. A radar sensor can see trough different types of plastic and glass of any colour as long as it is not metallized. This allows for a very flexible design of the housing as long as the rules below are observed.

- Cover must not be metallic.
- > No plastic coating with colours containing metallic or carbon particles.
- Distance between cover and front of Radar sensor should be >= 6.2mm
- > Cover thickness is very important and depends on the used material. Examples can be found in the application note "AN-03-Radome".
- Vibrations of the Radar antenna relatively to the cover should be avoided, because this generates signals that can trigger the output
- > The cover material can act as a lens and focus or disperse the transmitted waves. Use a constant material thickness within the area used for transmission to minimize the effect of the radome to the radiated antenna pattern.

Detailed information about the calculation and thickness for different cover materials can be found in the application note "AN-03-Radome".

Europe (CE-RED) 6.2

This module is a Radio Equipment Directive assessed radio module that is CE complaint and have been manufactured and tested with the intention of being integrated into a final product.

According to the RED every final product that includes a radio module is also a radio product which falls under the scope of the RED. This means that OEM and host manufacturers are ultimately responsible for the compliance of the host and the module. The final product must be reassessed against all of the essential requirements of the RED before it can be placed on the EU market. This includes reassessing the module for compliance against the following RED articles:

Article 3.1(a): Health and safety

Article 3.1(b): Electromagnetic compatibility (EMC) Article 3.2: Efficient use of radio spectrum (RF)

The RED knows different conformity assessment procedures to show compliance against the essential requirements (See RED Guide, chapter 2.6b). As long as the radio module can show compliance to Article 3.2 by the use of a harmonized standard, which is listed in the official journal of the EU (OJEU), it is not necessary to do an EU type examination for the final radio product by a notified body. In this case it is possible to demonstrate conformity according to the essential requirements of the RED by using Module A (Annex II of the RED), which allows to show conformity by internal production control.

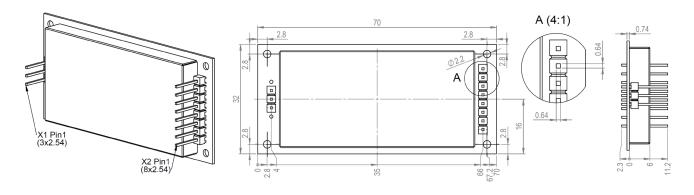
As long as a harmonized standard listed in the OJEU can be used to demonstrate conformity in accordance with Article 3.2 of the RED, it is possible to carry out the CE certification in self-declaration without the involvement of a notified body.

The K-MD7 shows compliance against the Article 3.2 by the use of the standard EN 300 440 which is a harmonized standard listed in the OJEU, what gives the possibility to show conformity by internal production control.

An OEM integrator can show compliance to article 3.1(a) and 3.1(b) for the final product by doing internal or external tests and following the Module A (Annex II of the RED) assessment procedure. To show compliance against article 3.2 it is possible to reuse the assessment of the K-MD7 as long as it is the only radio module in the final product or if the integrator can guarantee that only one radio module is operating at the same time. Test reports of the K-MD7 are available on request.

The ETSI guide EG 203 367 provides detailed guidance on the application of harmonized standards to multi-radio and combined equipment to demonstrate conformity.

6.2.1 RF Exposure Information (MPE)


This device has been tested and meets applicable limits for Radio Frequency (RF) exposure. A detailed calculation to show compliance to the RED Article 3.1(a) is available on request.

6.2.2 Simplified DoC Statement

Hereby, RFbeam Microwave GmbH declares that the radio equipment type K-MD7 is in compliance with Directive 2014/53/EU. The declaration of conformity may be consulted at www.rfbeam.ch.

7 Outline Dimensions

Figure 23: Outline dimensions in millimetre

8 Order Information

The ordering number consists of different parts with the structure below.

Figure 24: Ordering number structure

Table 16: Available ordering numbers

Ordering number	Description
K-MD7-RFB-00H-02	Standard K-MD7 without PC software
K-MD7-EVAL-RFB-00H	Standard K-MD7 evaluation kit with powerful PC software

9 Revision History

09/2022 - Revision A: Preliminary Version 03/2023 - Revision B: Initial Version

RFbeam does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and RFbeam reserves the right at any time without notice to change said circuitry and specifications.